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About this project

pybind11 is a lightweight header-only library that exposes C++ types in Python
and vice versa, mainly to create Python bindings of existing C++ code. Its
goals and syntax are similar to the excellent Boost.Python [http://www.boost.org/doc/libs/release/libs/python/doc/index.html] library by David
Abrahams: to minimize boilerplate code in traditional extension modules by
inferring type information using compile-time introspection.

The main issue with Boost.Python—and the reason for creating such a similar
project—is Boost. Boost is an enormously large and complex suite of utility
libraries that works with almost every C++ compiler in existence. This
compatibility has its cost: arcane template tricks and workarounds are
necessary to support the oldest and buggiest of compiler specimens. Now that
C++11-compatible compilers are widely available, this heavy machinery has
become an excessively large and unnecessary dependency.

Think of this library as a tiny self-contained version of Boost.Python with
everything stripped away that isn’t relevant for binding generation. Without
comments, the core header files only require ~2.5K lines of code and depend on
Python (2.7 or 3.x) and the C++ standard library. This compact implementation
was possible thanks to some of the new C++11 language features (specifically:
tuples, lambda functions and variadic templates). Since its creation, this
library has grown beyond Boost.Python in many ways, leading to dramatically
simpler binding code in many common situations.


Core features

The following core C++ features can be mapped to Python


	Functions accepting and returning custom data structures per value, reference, or pointer


	Instance methods and static methods


	Overloaded functions


	Instance attributes and static attributes


	Exceptions


	Enumerations


	Iterators and ranges


	Callbacks


	Custom operators


	STL data structures


	Smart pointers with reference counting like std::shared_ptr


	Internal references with correct reference counting


	C++ classes with virtual (and pure virtual) methods can be extended in Python






Goodies

In addition to the core functionality, pybind11 provides some extra goodies:


	It is possible to bind C++11 lambda functions with captured variables. The
lambda capture data is stored inside the resulting Python function object.


	pybind11 uses C++11 move constructors and move assignment operators whenever
possible to efficiently transfer custom data types.


	It’s easy to expose the internal storage of custom data types through
Pythons’ buffer protocols. This is handy e.g. for fast conversion between
C++ matrix classes like Eigen and NumPy without expensive copy operations.


	pybind11 can automatically vectorize functions so that they are transparently
applied to all entries of one or more NumPy array arguments.


	Python’s slice-based access and assignment operations can be supported with
just a few lines of code.


	Everything is contained in just a few header files; there is no need to link
against any additional libraries.


	Binaries are generally smaller by a factor of 2 or more compared to
equivalent bindings generated by Boost.Python.


	When supported by the compiler, two new C++14 features (relaxed constexpr and
return value deduction) are used to precompute function signatures at compile
time, leading to smaller binaries.


	With little extra effort, C++ types can be pickled and unpickled similar to
regular Python objects.






Supported compilers


	Clang/LLVM (any non-ancient version with C++11 support)


	GCC (any non-ancient version with C++11 support)


	Microsoft Visual Studio 2015 or newer


	Intel C++ compiler v15 or newer








          

      

      

    

  

    
      
          
            
  
First steps

This sections demonstrates the basic features of pybind11. Before getting
started, make sure that development environment is set up to compile the
included set of examples, which also double as test cases.


Compiling the test cases


Linux/MacOS

On Linux  you’ll need to install the python-dev or python3-dev packages as
well as cmake. On Mac OS, the included python version works out of the box,
but cmake must still be installed.

After installing the prerequisites, run

cmake .
make -j 4





followed by

make test







Windows

On Windows, use the CMake GUI [https://cmake.org/runningcmake] to create a Visual Studio project. Note that
only the 2015 release and newer versions are supported since pybind11 relies on
various C++11 language features that break older versions of Visual Studio.
After running CMake, open the created pybind11.sln file and perform a
release build, which will will produce a file named
Release\example.pyd. Copy this file to the example directory
and run example\run_test.py using the targeted Python version.


Note

When all tests fail, make sure that


	The Python binary and the testcases are compiled for the same processor
type and bitness (i.e. either i386 or x86_64)


	The Python binary used to run example\run_test.py matches the
Python version specified in the CMake GUI. This is controlled via
the PYTHON_EXECUTABLE PYTHON_INCLUDE_DIR, and
PYTHON_LIBRARY variables.







See also

Advanced users who are already familiar with Boost.Python may want to skip
the tutorial and look at the test cases in the example directory,
which exercise all features of pybind11.






Creating bindings for a simple function

Let’s start by creating Python bindings for an extremely simple function, which
adds two numbers and returns their result:

int add(int i, int j) {
    return i + j;
}





For simplicity 1, we’ll put both this function and the binding code into
a file named example.cpp with the following contents:

#include <pybind11/pybind11.h>

int add(int i, int j) {
    return i + j;
}

namespace py = pybind11;

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    m.def("add", &add, "A function which adds two numbers");

    return m.ptr();
}





The PYBIND11_PLUGIN() macro creates a function that will be called when an
import statement is issued from within Python. The next line creates a
module named example (with the supplied docstring). The method
module::def() generates binding code that exposes the
add() function to Python. The last line returns the internal Python object
associated with m to the Python interpreter.


Note

Notice how little code was needed to expose our function to Python: all
details regarding the function’s parameters and return value were
automatically inferred using template metaprogramming. This overall
approach and the used syntax are borrowed from Boost.Python, though the
underlying implementation is very different.



pybind11 is a header-only-library, hence it is not necessary to link against
any special libraries (other than Python itself). On Windows, use the CMake
build file discussed in section Building with CMake. On Linux and Mac OS, the above
example can be compiled using the following command

$ c++ -O3 -shared -std=c++11 -I <path-to-pybind11>/include `python-config --cflags --ldflags` example.cpp -o example.so





In general, it is advisable to include several additional build parameters
that can considerably reduce the size of the created binary. Refer to section
Building with CMake for a detailed example of a suitable cross-platform CMake-based
build system.

Assuming that the created file example.so (example.pyd on Windows)
is located in the current directory, the following interactive Python session
shows how to load and execute the example.

$ python
Python 2.7.10 (default, Aug 22 2015, 20:33:39)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.1)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import example
>>> example.add(1, 2)
3L
>>>







Keyword arguments

With a simple modification code, it is possible to inform Python about the
names of the arguments (“i” and “j” in this case).

m.def("add", &add, "A function which adds two numbers",
      py::arg("i"), py::arg("j"));





arg is one of several special tag classes which can be used to pass
metadata into module::def(). With this modified binding code, we can now
call the function using keyword arguments, which is a more readable alternative
particularly for functions taking many parameters:

>>> import example
>>> example.add(i=1, j=2)
3L





The keyword names also appear in the function signatures within the documentation.

>>> help(example)

....

FUNCTIONS
    add(...)
        Signature : (i: int, j: int) -> int

        A function which adds two numbers





A shorter notation for named arguments is also available:

// regular notation
m.def("add1", &add, py::arg("i"), py::arg("j"));
// shorthand
using namespace pybind11::literals;
m.def("add2", &add, "i"_a, "j"_a);





The _a suffix forms a C++11 literal which is equivalent to arg.
Note that the literal operator must first be made visible with the directive
using namespace pybind11::literals. This does not bring in anything else
from the pybind11 namespace except for literals.



Default arguments

Suppose now that the function to be bound has default arguments, e.g.:

int add(int i = 1, int j = 2) {
    return i + j;
}





Unfortunately, pybind11 cannot automatically extract these parameters, since they
are not part of the function’s type information. However, they are simple to specify
using an extension of arg:

m.def("add", &add, "A function which adds two numbers",
      py::arg("i") = 1, py::arg("j") = 2);





The default values also appear within the documentation.

>>> help(example)

....

FUNCTIONS
    add(...)
        Signature : (i: int = 1, j: int = 2) -> int

        A function which adds two numbers





The shorthand notation is also available for default arguments:

// regular notation
m.def("add1", &add, py::arg("i") = 1, py::arg("j") = 2);
// shorthand
m.def("add2", &add, "i"_a=1, "j"_a=2);







Supported data types

The following basic data types are supported out of the box (some may require
an additional extension header to be included). To pass other data structures
as arguments and return values, refer to the section on binding Object-oriented code.








	Data type

	Description

	Header file





	int8_t, uint8_t

	8-bit integers

	pybind11/pybind11.h



	int16_t, uint16_t

	16-bit integers

	pybind11/pybind11.h



	int32_t, uint32_t

	32-bit integers

	pybind11/pybind11.h



	int64_t, uint64_t

	64-bit integers

	pybind11/pybind11.h



	ssize_t, size_t

	Platform-dependent size

	pybind11/pybind11.h



	float, double

	Floating point types

	pybind11/pybind11.h



	bool

	Two-state Boolean type

	pybind11/pybind11.h



	char

	Character literal

	pybind11/pybind11.h



	wchar_t

	Wide character literal

	pybind11/pybind11.h



	const char *

	UTF-8 string literal

	pybind11/pybind11.h



	const wchar_t *

	Wide string literal

	pybind11/pybind11.h



	std::string

	STL dynamic UTF-8 string

	pybind11/pybind11.h



	std::wstring

	STL dynamic wide string

	pybind11/pybind11.h



	std::pair<T1, T2>

	Pair of two custom types

	pybind11/pybind11.h



	std::tuple<...>

	Arbitrary tuple of types

	pybind11/pybind11.h



	std::reference_wrapper<...>

	Reference type wrapper

	pybind11/pybind11.h



	std::complex<T>

	Complex numbers

	pybind11/complex.h



	std::array<T, Size>

	STL static array

	pybind11/stl.h



	std::vector<T>

	STL dynamic array

	pybind11/stl.h



	std::list<T>

	STL linked list

	pybind11/stl.h



	std::map<T1, T2>

	STL ordered map

	pybind11/stl.h



	std::unordered_map<T1, T2>

	STL unordered map

	pybind11/stl.h



	std::set<T>

	STL ordered set

	pybind11/stl.h



	std::unordered_set<T>

	STL unordered set

	pybind11/stl.h



	std::function<...>

	STL polymorphic function

	pybind11/functional.h



	Eigen::Matrix<...>

	Dense Eigen matrices

	pybind11/eigen.h



	Eigen::SparseMatrix<...>

	Sparse Eigen matrices

	pybind11/eigen.h







	1

	In practice, implementation and binding code will generally be located
in separate files.









          

      

      

    

  

    
      
          
            
  
Object-oriented code


Creating bindings for a custom type

Let’s now look at a more complex example where we’ll create bindings for a
custom C++ data structure named Pet. Its definition is given below:

struct Pet {
    Pet(const std::string &name) : name(name) { }
    void setName(const std::string &name_) { name = name_; }
    const std::string &getName() const { return name; }

    std::string name;
};





The binding code for Pet looks as follows:

#include <pybind11/pybind11.h>

namespace py = pybind11;

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    py::class_<Pet>(m, "Pet")
        .def(py::init<const std::string &>())
        .def("setName", &Pet::setName)
        .def("getName", &Pet::getName);

    return m.ptr();
}





class_ creates bindings for a C++ class or struct-style data
structure. init() is a convenience function that takes the types of a
constructor’s parameters as template arguments and wraps the corresponding
constructor (see the Custom constructors section for details). An
interactive Python session demonstrating this example is shown below:

% python
>>> import example
>>> p = example.Pet('Molly')
>>> print(p)
<example.Pet object at 0x10cd98060>
>>> p.getName()
u'Molly'
>>> p.setName('Charly')
>>> p.getName()
u'Charly'






See also

Static member functions can be bound in the same way using
class_::def_static().





Keyword and default arguments

It is possible to specify keyword and default arguments using the syntax
discussed in the previous chapter. Refer to the sections Keyword arguments
and Default arguments for details.



Binding lambda functions

Note how print(p) produced a rather useless summary of our data structure in the example above:

>>> print(p)
<example.Pet object at 0x10cd98060>





To address this, we could bind an utility function that returns a human-readable
summary to the special method slot named __repr__. Unfortunately, there is no
suitable functionality in the Pet data structure, and it would be nice if
we did not have to change it. This can easily be accomplished by binding a
Lambda function instead:

py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def("setName", &Pet::setName)
    .def("getName", &Pet::getName)
    .def("__repr__",
        [](const Pet &a) {
            return "<example.Pet named '" + a.name + "'>";
        }
    );





Both stateless 1 and stateful lambda closures are supported by pybind11.
With the above change, the same Python code now produces the following output:

>>> print(p)
<example.Pet named 'Molly'>







Instance and static fields

We can also directly expose the name field using the
class_::def_readwrite() method. A similar class_::def_readonly()
method also exists for const fields.

py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_readwrite("name", &Pet::name)
    // ... remainder ...





This makes it possible to write

>>> p = example.Pet('Molly')
>>> p.name
u'Molly'
>>> p.name = 'Charly'
>>> p.name
u'Charly'





Now suppose that Pet::name was a private internal variable
that can only be accessed via setters and getters.

class Pet {
public:
    Pet(const std::string &name) : name(name) { }
    void setName(const std::string &name_) { name = name_; }
    const std::string &getName() const { return name; }
private:
    std::string name;
};





In this case, the method class_::def_property()
(class_::def_property_readonly() for read-only data) can be used to
provide a field-like interface within Python that will transparently call
the setter and getter functions:

py::class_<Pet>(m, "Pet")
    .def(py::init<const std::string &>())
    .def_property("name", &Pet::getName, &Pet::setName)
    // ... remainder ...






See also

Similar functions class_::def_readwrite_static(),
class_::def_readonly_static() class_::def_property_static(),
and class_::def_property_readonly_static() are provided for binding
static variables and properties.





Inheritance

Suppose now that the example consists of two data structures with an
inheritance relationship:

struct Pet {
    Pet(const std::string &name) : name(name) { }
    std::string name;
};

struct Dog : Pet {
    Dog(const std::string &name) : Pet(name) { }
    std::string bark() const { return "woof!"; }
};





There are two different ways of indicating a hierarchical relationship to
pybind11: the first is by specifying the C++ base class explicitly during
construction using the base attribute:

py::class_<Pet>(m, "Pet")
   .def(py::init<const std::string &>())
   .def_readwrite("name", &Pet::name);

py::class_<Dog>(m, "Dog", py::base<Pet>() /* <- specify C++ parent type */)
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);





Alternatively, we can also assign a name to the previously bound Pet
class_ object and reference it when binding the Dog class:

py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
   .def_readwrite("name", &Pet::name);

py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);





Functionality-wise, both approaches are completely equivalent. Afterwards,
instances will expose fields and methods of both types:

>>> p = example.Dog('Molly')
>>> p.name
u'Molly'
>>> p.bark()
u'woof!'







Overloaded methods

Sometimes there are several overloaded C++ methods with the same name taking
different kinds of input arguments:

struct Pet {
    Pet(const std::string &name, int age) : name(name), age(age) { }

    void set(int age) { age = age; }
    void set(const std::string &name) { name = name; }

    std::string name;
    int age;
};





Attempting to bind Pet::set will cause an error since the compiler does not
know which method the user intended to select. We can disambiguate by casting
them to function pointers. Binding multiple functions to the same Python name
automatically creates a chain of function overloads that will be tried in
sequence.

py::class_<Pet>(m, "Pet")
   .def(py::init<const std::string &, int>())
   .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age")
   .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name");





The overload signatures are also visible in the method’s docstring:

>>> help(example.Pet)

class Pet(__builtin__.object)
 |  Methods defined here:
 |
 |  __init__(...)
 |      Signature : (Pet, str, int) -> NoneType
 |
 |  set(...)
 |      1. Signature : (Pet, int) -> NoneType
 |
 |      Set the pet's age
 |
 |      2. Signature : (Pet, str) -> NoneType
 |
 |      Set the pet's name






Note

To define multiple overloaded constructors, simply declare one after the
other using the .def(py::init<...>()) syntax. The existing machinery
for specifying keyword and default arguments also works.





Enumerations and internal types

Let’s now suppose that the example class contains an internal enumeration type,
e.g.:

struct Pet {
    enum Kind {
        Dog = 0,
        Cat
    };

    Pet(const std::string &name, Kind type) : name(name), type(type) { }

    std::string name;
    Kind type;
};





The binding code for this example looks as follows:

py::class_<Pet> pet(m, "Pet");

pet.def(py::init<const std::string &, Pet::Kind>())
    .def_readwrite("name", &Pet::name)
    .def_readwrite("type", &Pet::type);

py::enum_<Pet::Kind>(pet, "Kind")
    .value("Dog", Pet::Kind::Dog)
    .value("Cat", Pet::Kind::Cat)
    .export_values();





To ensure that the Kind type is created within the scope of Pet, the
pet class_ instance must be supplied to the enum_.
constructor. The enum_::export_values() function exports the enum entries
into the parent scope, which should be skipped for newer C++11-style strongly
typed enums.

>>> p = Pet('Lucy', Pet.Cat)
>>> p.type
Kind.Cat
>>> int(p.type)
1L






	1

	Stateless closures are those with an empty pair of brackets [] as the capture object.









          

      

      

    

  

    
      
          
            
  
Advanced topics

For brevity, the rest of this chapter assumes that the following two lines are
present:

#include <pybind11/pybind11.h>

namespace py = pybind11;






Exporting constants and mutable objects

To expose a C++ constant, use the attr function to register it in a module
as shown below. The int_ class is one of many small wrapper objects defined
in pybind11/pytypes.h. General objects (including integers) can also be
converted using the function cast.

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");
    m.attr("MY_CONSTANT") = py::int_(123);
    m.attr("MY_CONSTANT_2") = py::cast(new MyObject());
}







Operator overloading

Suppose that we’re given the following Vector2 class with a vector addition
and scalar multiplication operation, all implemented using overloaded operators
in C++.

class Vector2 {
public:
    Vector2(float x, float y) : x(x), y(y) { }

    Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
    Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
    Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
    Vector2& operator*=(float v) { x *= v; y *= v; return *this; }

    friend Vector2 operator*(float f, const Vector2 &v) {
        return Vector2(f * v.x, f * v.y);
    }

    std::string toString() const {
        return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
    }
private:
    float x, y;
};





The following snippet shows how the above operators can be conveniently exposed
to Python.

#include <pybind11/operators.h>

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    py::class_<Vector2>(m, "Vector2")
        .def(py::init<float, float>())
        .def(py::self + py::self)
        .def(py::self += py::self)
        .def(py::self *= float())
        .def(float() * py::self)
        .def("__repr__", &Vector2::toString);

    return m.ptr();
}





Note that a line like

.def(py::self * float())





is really just short hand notation for

.def("__mul__", [](const Vector2 &a, float b) {
    return a * b;
})





This can be useful for exposing additional operators that don’t exist on the
C++ side, or to perform other types of customization.


Note

To use the more convenient py::self notation, the additional
header file pybind11/operators.h must be included.




See also

The file example/example3.cpp contains a complete example that
demonstrates how to work with overloaded operators in more detail.





Callbacks and passing anonymous functions

The C++11 standard brought lambda functions and the generic polymorphic
function wrapper std::function<> to the C++ programming language, which
enable powerful new ways of working with functions. Lambda functions come in
two flavors: stateless lambda function resemble classic function pointers that
link to an anonymous piece of code, while stateful lambda functions
additionally depend on captured variables that are stored in an anonymous
lambda closure object.

Here is a simple example of a C++ function that takes an arbitrary function
(stateful or stateless) with signature int -> int as an argument and runs
it with the value 10.

int func_arg(const std::function<int(int)> &f) {
    return f(10);
}





The example below is more involved: it takes a function of signature int -> int
and returns another function of the same kind. The return value is a stateful
lambda function, which stores the value f in the capture object and adds 1 to
its return value upon execution.

std::function<int(int)> func_ret(const std::function<int(int)> &f) {
    return [f](int i) {
        return f(i) + 1;
    };
}





After including the extra header file pybind11/functional.h, it is almost
trivial to generate binding code for both of these functions.

#include <pybind11/functional.h>

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    m.def("func_arg", &func_arg);
    m.def("func_ret", &func_ret);

    return m.ptr();
}





The following interactive session shows how to call them from Python.

$ python
>>> import example
>>> def square(i):
...     return i * i
...
>>> example.func_arg(square)
100L
>>> square_plus_1 = example.func_ret(square)
>>> square_plus_1(4)
17L
>>>






Note

This functionality is very useful when generating bindings for callbacks in
C++ libraries (e.g. a graphical user interface library).

The file example/example5.cpp contains a complete example that
demonstrates how to work with callbacks and anonymous functions in more detail.




Warning

Keep in mind that passing a function from C++ to Python (or vice versa)
will instantiate a piece of wrapper code that translates function
invocations between the two languages. Copying the same function back and
forth between Python and C++ many times in a row will cause these wrappers
to accumulate, which can decrease performance.





Overriding virtual functions in Python

Suppose that a C++ class or interface has a virtual function that we’d like to
to override from within Python (we’ll focus on the class Animal; Dog is
given as a specific example of how one would do this with traditional C++
code).

class Animal {
public:
    virtual ~Animal() { }
    virtual std::string go(int n_times) = 0;
};

class Dog : public Animal {
public:
    std::string go(int n_times) {
        std::string result;
        for (int i=0; i<n_times; ++i)
            result += "woof! ";
        return result;
    }
};





Let’s also suppose that we are given a plain function which calls the
function go() on an arbitrary Animal instance.

std::string call_go(Animal *animal) {
    return animal->go(3);
}





Normally, the binding code for these classes would look as follows:

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    py::class_<Animal> animal(m, "Animal");
    animal
        .def("go", &Animal::go);

    py::class_<Dog>(m, "Dog", animal)
        .def(py::init<>());

    m.def("call_go", &call_go);

    return m.ptr();
}





However, these bindings are impossible to extend: Animal is not
constructible, and we clearly require some kind of “trampoline” that
redirects virtual calls back to Python.

Defining a new type of Animal from within Python is possible but requires a
helper class that is defined as follows:

class PyAnimal : public Animal {
public:
    /* Inherit the constructors */
    using Animal::Animal;

    /* Trampoline (need one for each virtual function) */
    std::string go(int n_times) {
        PYBIND11_OVERLOAD_PURE(
            std::string, /* Return type */
            Animal,      /* Parent class */
            go,          /* Name of function */
            n_times      /* Argument(s) */
        );
    }
};





The macro PYBIND11_OVERLOAD_PURE() should be used for pure virtual
functions, and PYBIND11_OVERLOAD() should be used for functions which have
a default implementation.

There are also two alternate macros PYBIND11_OVERLOAD_PURE_NAME() and
PYBIND11_OVERLOAD_NAME() which take a string-valued name argument
after the Name of the function slot. This is useful when the C++ and Python
versions of the function have different names, e.g. operator() vs __call__.

The binding code also needs a few minor adaptations (highlighted):

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    py::class_<PyAnimal> animal(m, "Animal");
    animal
        .alias<Animal>()
        .def(py::init<>())
        .def("go", &Animal::go);

    py::class_<Dog>(m, "Dog", animal)
        .def(py::init<>());

    m.def("call_go", &call_go);

    return m.ptr();
}





Importantly, the trampoline helper class is used as the template argument to
class_, and a call to class_::alias() informs the binding
generator that this is merely an alias for the underlying type Animal.
Following this, we are able to define a constructor as usual.

The Python session below shows how to override Animal::go and invoke it via
a virtual method call.

>>> from example import *
>>> d = Dog()
>>> call_go(d)
u'woof! woof! woof! '
>>> class Cat(Animal):
...     def go(self, n_times):
...             return "meow! " * n_times
...
>>> c = Cat()
>>> call_go(c)
u'meow! meow! meow! '





Please take a look at the General notes regarding convenience macros before using this feature.


See also

The file example/example12.cpp contains a complete example that
demonstrates how to override virtual functions using pybind11 in more
detail.





General notes regarding convenience macros

pybind11 provides a few convenience macros such as
PYBIND11_MAKE_OPAQUE() and PYBIND11_DECLARE_HOLDER_TYPE(), and
PYBIND11_OVERLOAD_*. Since these are “just” macros that are evaluated
in the preprocessor (which has no concept of types), they will get confused
by commas in a template argument such as PYBIND11_OVERLOAD(MyReturnValue<T1,
T2>, myFunc). In this case, the preprocessor assumes that the comma indicates
the beginnning of the next parameter. Use a typedef to bind the template to
another name and use it in the macro to avoid this problem.



Global Interpreter Lock (GIL)

The classes gil_scoped_release and gil_scoped_acquire can be
used to acquire and release the global interpreter lock in the body of a C++
function call. In this way, long-running C++ code can be parallelized using
multiple Python threads. Taking the previous section as an example, this could
be realized as follows (important changes highlighted):

class PyAnimal : public Animal {
public:
    /* Inherit the constructors */
    using Animal::Animal;

    /* Trampoline (need one for each virtual function) */
    std::string go(int n_times) {
        /* Acquire GIL before calling Python code */
        py::gil_scoped_acquire acquire;

        PYBIND11_OVERLOAD_PURE(
            std::string, /* Return type */
            Animal,      /* Parent class */
            go,          /* Name of function */
            n_times      /* Argument(s) */
        );
    }
};

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    py::class_<PyAnimal> animal(m, "Animal");
    animal
        .alias<Animal>()
        .def(py::init<>())
        .def("go", &Animal::go);

    py::class_<Dog>(m, "Dog", animal)
        .def(py::init<>());

    m.def("call_go", [](Animal *animal) -> std::string {
        /* Release GIL before calling into (potentially long-running) C++ code */
        py::gil_scoped_release release;
        return call_go(animal);
    });

    return m.ptr();
}







Passing STL data structures

When including the additional header file pybind11/stl.h, conversions
between std::vector<>, std::list<>, std::set<>, and std::map<>
and the Python list, set and dict data structures are automatically
enabled. The types std::pair<> and std::tuple<> are already supported
out of the box with just the core pybind11/pybind11.h header.


Note

Arbitrary nesting of any of these types is supported.




See also

The file example/example2.cpp contains a complete example that
demonstrates how to pass STL data types in more detail.





Binding sequence data types, iterators, the slicing protocol, etc.

Please refer to the supplemental example for details.


See also

The file example/example6.cpp contains a complete example that
shows how to bind a sequence data type, including length queries
(__len__), iterators (__iter__), the slicing protocol and other
kinds of useful operations.





Return value policies

Python and C++ use wildly different ways of managing the memory and lifetime of
objects managed by them. This can lead to issues when creating bindings for
functions that return a non-trivial type. Just by looking at the type
information, it is not clear whether Python should take charge of the returned
value and eventually free its resources, or if this is handled on the C++ side.
For this reason, pybind11 provides a several return value policy annotations
that can be passed to the module::def() and class_::def()
functions. The default policy is return_value_policy::automatic.







	Return value policy

	Description





	return_value_policy::automatic

	This is the default return value policy, which falls back to the policy
return_value_policy::take_ownership when the return value is a
pointer. Otherwise, it uses return_value::move or
return_value::copy for rvalue and lvalue references, respectively.
See below for a description of what all of these different policies do.



	return_value_policy::automatic_reference

	As above, but use policy return_value_policy::reference when the
return value is a pointer. You probably won’t need to use this.



	return_value_policy::take_ownership

	Reference an existing object (i.e. do not create a new copy) and take
ownership. Python will call the destructor and delete operator when the
object’s reference count reaches zero. Undefined behavior ensues when the
C++ side does the same..



	return_value_policy::copy

	Create a new copy of the returned object, which will be owned by Python.
This policy is comparably safe because the lifetimes of the two instances
are decoupled.



	return_value_policy::move

	Use std::move to move the return value contents into a new instance
that will be owned by Python. This policy is comparably safe because the
lifetimes of the two instances (move source and destination) are decoupled.



	return_value_policy::reference

	Reference an existing object, but do not take ownership. The C++ side is
responsible for managing the object’s lifetime and deallocating it when
it is no longer used. Warning: undefined behavior will ensue when the C++
side deletes an object that is still referenced and used by Python.



	return_value_policy::reference_internal

	This policy only applies to methods and properties. It references the
object without taking ownership similar to the above
return_value_policy::reference policy. In contrast to that policy,
the function or property’s implicit this argument (called the parent)
is considered to be the the owner of the return value (the child).
pybind11 then couples the lifetime of the parent to the child via a
reference relationship that ensures that the parent cannot be garbage
collected while Python is still using the child. More advanced variations
of this scheme are also possible using combinations of
return_value_policy::reference and the keep_alive call
policy described next.






The following example snippet shows a use case of the
return_value_policy::reference_internal policy.

class Example {
public:
    Internal &get_internal() { return internal; }
private:
    Internal internal;
};

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind11 example plugin");

    py::class_<Example>(m, "Example")
        .def(py::init<>())
        .def("get_internal", &Example::get_internal, "Return the internal data",
                             py::return_value_policy::reference_internal);

    return m.ptr();
}






Warning

Code with invalid call policies might access unitialized memory or free
data structures multiple times, which can lead to hard-to-debug
non-determinism and segmentation faults, hence it is worth spending the
time to understand all the different options in the table above.




Note

The next section on Additional call policies discusses call policies that can be
specified in addition to a return value policy from the list above. Call
policies indicate reference relationships that can involve both return values
and parameters of functions.




Note

As an alternative to elaborate call policies and lifetime management logic,
consider using smart pointers (see the section on Smart pointers for
details). Smart pointers can tell whether an object is still referenced from
C++ or Python, which generally eliminates the kinds of inconsistencies that
can lead to crashes or undefined behavior. For functions returning smart
pointers, it is not necessary to specify a return value policy.





Additional call policies

In addition to the above return value policies, further call policies can be
specified to indicate dependencies between parameters. There is currently just
one policy named keep_alive<Nurse, Patient>, which indicates that the
argument with index Patient should be kept alive at least until the
argument with index Nurse is freed by the garbage collector; argument
indices start at one, while zero refers to the return value. For methods, index
one refers to the implicit this pointer, while regular arguments begin at
index two. Arbitrarily many call policies can be specified.

Consider the following example: the binding code for a list append operation
that ties the lifetime of the newly added element to the underlying container
might be declared as follows:

py::class_<List>(m, "List")
    .def("append", &List::append, py::keep_alive<1, 2>());






Note

keep_alive is analogous to the with_custodian_and_ward (if Nurse,
Patient != 0) and with_custodian_and_ward_postcall (if Nurse/Patient ==
0) policies from Boost.Python.




See also

The file example/example13.cpp contains a complete example that
demonstrates using keep_alive in more detail.





Implicit type conversions

Suppose that instances of two types A and B are used in a project, and
that an A can easily be converted into an instance of type B (examples of this
could be a fixed and an arbitrary precision number type).

py::class_<A>(m, "A")
    /// ... members ...

py::class_<B>(m, "B")
    .def(py::init<A>())
    /// ... members ...

m.def("func",
    [](const B &) { /* .... */ }
);





To invoke the function func using a variable a containing an A
instance, we’d have to write func(B(a)) in Python. On the other hand, C++
will automatically apply an implicit type conversion, which makes it possible
to directly write func(a).

In this situation (i.e. where B has a constructor that converts from
A), the following statement enables similar implicit conversions on the
Python side:

py::implicitly_convertible<A, B>();







Unique pointers

Given a class Example with Python bindings, it’s possible to return
instances wrapped in C++11 unique pointers, like so

std::unique_ptr<Example> create_example() { return std::unique_ptr<Example>(new Example()); }





m.def("create_example", &create_example);





In other words, there is nothing special that needs to be done. While returning
unique pointers in this way is allowed, it is illegal to use them as function
arguments. For instance, the following function signature cannot be processed
by pybind11.

void do_something_with_example(std::unique_ptr<Example> ex) { ... }





The above signature would imply that Python needs to give up ownership of an
object that is passed to this function, which is generally not possible (for
instance, the object might be referenced elsewhere).



Smart pointers

This section explains how to pass values that are wrapped in “smart” pointer
types with internal reference counting. For the simpler C++11 unique pointers,
refer to the previous section.

The binding generator for classes, class_, takes an optional second
template type, which denotes a special holder type that is used to manage
references to the object. When wrapping a type named Type, the default
value of this template parameter is std::unique_ptr<Type>, which means that
the object is deallocated when Python’s reference count goes to zero.

It is possible to switch to other types of reference counting wrappers or smart
pointers, which is useful in codebases that rely on them. For instance, the
following snippet causes std::shared_ptr to be used instead.

py::class_<Example, std::shared_ptr<Example> /* <- holder type */> obj(m, "Example");





Note that any particular class can only be associated with a single holder type.

To enable transparent conversions for functions that take shared pointers as an
argument or that return them, a macro invocation similar to the following must
be declared at the top level before any binding code:

PYBIND11_DECLARE_HOLDER_TYPE(T, std::shared_ptr<T>);






Note

The first argument of PYBIND11_DECLARE_HOLDER_TYPE() should be a
placeholder name that is used as a template parameter of the second
argument. Thus, feel free to use any identifier, but use it consistently on
both sides; also, don’t use the name of a type that already exists in your
codebase.



One potential stumbling block when using holder types is that they need to be
applied consistently. Can you guess what’s broken about the following binding
code?

class Child { };

class Parent {
public:
   Parent() : child(std::make_shared<Child>()) { }
   Child *get_child() { return child.get(); }  /* Hint: ** DON'T DO THIS ** */
private:
    std::shared_ptr<Child> child;
};

PYBIND11_PLUGIN(example) {
    py::module m("example");

    py::class_<Child, std::shared_ptr<Child>>(m, "Child");

    py::class_<Parent, std::shared_ptr<Parent>>(m, "Parent")
       .def(py::init<>())
       .def("get_child", &Parent::get_child);

    return m.ptr();
}





The following Python code will cause undefined behavior (and likely a
segmentation fault).

from example import Parent
print(Parent().get_child())





The problem is that Parent::get_child() returns a pointer to an instance of
Child, but the fact that this instance is already managed by
std::shared_ptr<...> is lost when passing raw pointers. In this case,
pybind11 will create a second independent std::shared_ptr<...> that also
claims ownership of the pointer. In the end, the object will be freed twice
since these shared pointers have no way of knowing about each other.

There are two ways to resolve this issue:


	For types that are managed by a smart pointer class, never use raw pointers
in function arguments or return values. In other words: always consistently
wrap pointers into their designated holder types (such as
std::shared_ptr<...>). In this case, the signature of get_child()
should be modified as follows:




std::shared_ptr<Child> get_child() { return child; }






	Adjust the definition of Child by specifying
std::enable_shared_from_this<T> (see cppreference [http://en.cppreference.com/w/cpp/memory/enable_shared_from_this] for details) as a
base class. This adds a small bit of information to Child that allows
pybind11 to realize that there is already an existing
std::shared_ptr<...> and communicate with it. In this case, the
declaration of Child should look as follows:




class Child : public std::enable_shared_from_this<Child> { };





Please take a look at the General notes regarding convenience macros before using this feature.


See also

The file example/example8.cpp contains a complete example that
demonstrates how to work with custom reference-counting holder types in
more detail.





Custom constructors

The syntax for binding constructors was previously introduced, but it only
works when a constructor with the given parameters actually exists on the C++
side. To extend this to more general cases, let’s take a look at what actually
happens under the hood: the following statement

py::class_<Example>(m, "Example")
    .def(py::init<int>());





is short hand notation for

py::class_<Example>(m, "Example")
    .def("__init__",
        [](Example &instance, int arg) {
            new (&instance) Example(arg);
        }
    );





In other words, init() creates an anonymous function that invokes an
in-place constructor. Memory allocation etc. is already take care of beforehand
within pybind11.



Catching and throwing exceptions

When C++ code invoked from Python throws an std::exception, it is
automatically converted into a Python Exception. pybind11 defines multiple
special exception classes that will map to different types of Python
exceptions:







	C++ exception type

	Python exception type





	std::exception

	RuntimeError



	std::bad_alloc

	MemoryError



	std::domain_error

	ValueError



	std::invalid_argument

	ValueError



	std::length_error

	ValueError



	std::out_of_range

	ValueError



	std::range_error

	ValueError



	pybind11::stop_iteration

	StopIteration (used to
implement custom iterators)



	pybind11::index_error

	IndexError (used to
indicate out of bounds
accesses in __getitem__,
__setitem__, etc.)



	pybind11::value_error

	ValueError (used to
indicate wrong value passed
in container.remove(...)



	pybind11::error_already_set

	Indicates that the Python
exception flag has already
been initialized






When a Python function invoked from C++ throws an exception, it is converted
into a C++ exception of type error_already_set whose string payload
contains a textual summary.

There is also a special exception cast_error that is thrown by
handle::call() when the input arguments cannot be converted to Python
objects.



Treating STL data structures as opaque objects

pybind11 heavily relies on a template matching mechanism to convert parameters
and return values that are constructed from STL data types such as vectors,
linked lists, hash tables, etc. This even works in a recursive manner, for
instance to deal with lists of hash maps of pairs of elementary and custom
types, etc.

However, a fundamental limitation of this approach is that internal conversions
between Python and C++ types involve a copy operation that prevents
pass-by-reference semantics. What does this mean?

Suppose we bind the following function

void append_1(std::vector<int> &v) {
   v.push_back(1);
}





and call it from Python, the following happens:

>>> v = [5, 6]
>>> append_1(v)
>>> print(v)
[5, 6]





As you can see, when passing STL data structures by reference, modifications
are not propagated back the Python side. A similar situation arises when
exposing STL data structures using the def_readwrite or def_readonly
functions:

/* ... definition ... */

class MyClass {
    std::vector<int> contents;
};

/* ... binding code ... */

py::class_<MyClass>(m, "MyClass")
    .def(py::init<>)
    .def_readwrite("contents", &MyClass::contents);





In this case, properties can be read and written in their entirety. However, an
append operaton involving such a list type has no effect:

>>> m = MyClass()
>>> m.contents = [5, 6]
>>> print(m.contents)
[5, 6]
>>> m.contents.append(7)
>>> print(m.contents)
[5, 6]





To deal with both of the above situations, pybind11 provides a macro named
PYBIND11_MAKE_OPAQUE(T) that disables the template-based conversion
machinery of types, thus rendering them opaque. The contents of opaque
objects are never inspected or extracted, hence they can be passed by
reference. For instance, to turn std::vector<int> into an opaque type, add
the declaration

PYBIND11_MAKE_OPAQUE(std::vector<int>);





before any binding code (e.g. invocations to class_::def(), etc.). This
macro must be specified at the top level, since instantiates a partial template
overload. If your binding code consists of multiple compilation units, it must
be present in every file preceding any usage of std::vector<int>. Opaque
types must also have a corresponding class_ declaration to associate them
with a name in Python, and to define a set of available operations:

py::class_<std::vector<int>>(m, "IntVector")
    .def(py::init<>())
    .def("clear", &std::vector<int>::clear)
    .def("pop_back", &std::vector<int>::pop_back)
    .def("__len__", [](const std::vector<int> &v) { return v.size(); })
    .def("__iter__", [](std::vector<int> &v) {
       return py::make_iterator(v.begin(), v.end());
    }, py::keep_alive<0, 1>()) /* Keep vector alive while iterator is used */
    // ....





Please take a look at the General notes regarding convenience macros before using this feature.


See also

The file example/example14.cpp contains a complete example that
demonstrates how to create and expose opaque types using pybind11 in more
detail.





Transparent conversion of dense and sparse Eigen data types

Eigen 1 is C++ header-based library for dense and sparse linear algebra. Due to
its popularity and widespread adoption, pybind11 provides transparent
conversion support between Eigen and Scientific Python linear algebra data types.

Specifically, when including the optional header file pybind11/eigen.h,
pybind11 will automatically and transparently convert


	Static and dynamic Eigen dense vectors and matrices to instances of
numpy.ndarray (and vice versa).





	Eigen sparse vectors and matrices to instances of
scipy.sparse.csr_matrix/scipy.sparse.csc_matrix (and vice versa).




This makes it possible to bind most kinds of functions that rely on these types.
One major caveat are functions that take Eigen matrices by reference and modify
them somehow, in which case the information won’t be propagated to the caller.

/* The Python bindings of this function won't replicate
   the intended effect of modifying the function argument */
void scale_by_2(Eigen::Vector3f &v) {
   v *= 2;
}





To see why this is, refer to the section on Treating STL data structures as opaque objects (although that
section specifically covers STL data types, the underlying issue is the same).
The next two sections discuss an efficient alternative for exposing the
underlying native Eigen types as opaque objects in a way that still integrates
with NumPy and SciPy.


	1

	http://eigen.tuxfamily.org






See also

The file example/eigen.cpp contains a complete example that
shows how to pass Eigen sparse and dense data types in more detail.





Buffer protocol

Python supports an extremely general and convenient approach for exchanging
data between plugin libraries. Types can expose a buffer view 2, which
provides fast direct access to the raw internal data representation. Suppose we
want to bind the following simplistic Matrix class:

class Matrix {
public:
    Matrix(size_t rows, size_t cols) : m_rows(rows), m_cols(cols) {
        m_data = new float[rows*cols];
    }
    float *data() { return m_data; }
    size_t rows() const { return m_rows; }
    size_t cols() const { return m_cols; }
private:
    size_t m_rows, m_cols;
    float *m_data;
};





The following binding code exposes the Matrix contents as a buffer object,
making it possible to cast Matrices into NumPy arrays. It is even possible to
completely avoid copy operations with Python expressions like
np.array(matrix_instance, copy = False).

py::class_<Matrix>(m, "Matrix")
   .def_buffer([](Matrix &m) -> py::buffer_info {
        return py::buffer_info(
            m.data(),                            /* Pointer to buffer */
            sizeof(float),                       /* Size of one scalar */
            py::format_descriptor<float>::value, /* Python struct-style format descriptor */
            2,                                   /* Number of dimensions */
            { m.rows(), m.cols() },              /* Buffer dimensions */
            { sizeof(float) * m.rows(),          /* Strides (in bytes) for each index */
              sizeof(float) }
        );
    });





The snippet above binds a lambda function, which can create py::buffer_info
description records on demand describing a given matrix. The contents of
py::buffer_info mirror the Python buffer protocol specification.

struct buffer_info {
    void *ptr;
    size_t itemsize;
    std::string format;
    int ndim;
    std::vector<size_t> shape;
    std::vector<size_t> strides;
};





To create a C++ function that can take a Python buffer object as an argument,
simply use the type py::buffer as one of its arguments. Buffers can exist
in a great variety of configurations, hence some safety checks are usually
necessary in the function body. Below, you can see an basic example on how to
define a custom constructor for the Eigen double precision matrix
(Eigen::MatrixXd) type, which supports initialization from compatible
buffer objects (e.g. a NumPy matrix).

/* Bind MatrixXd (or some other Eigen type) to Python */
typedef Eigen::MatrixXd Matrix;

typedef Matrix::Scalar Scalar;
constexpr bool rowMajor = Matrix::Flags & Eigen::RowMajorBit;

py::class_<Matrix>(m, "Matrix")
    .def("__init__", [](Matrix &m, py::buffer b) {
        typedef Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic> Strides;

        /* Request a buffer descriptor from Python */
        py::buffer_info info = b.request();

        /* Some sanity checks ... */
        if (info.format != py::format_descriptor<Scalar>::value)
            throw std::runtime_error("Incompatible format: expected a double array!");

        if (info.ndim != 2)
            throw std::runtime_error("Incompatible buffer dimension!");

        auto strides = Strides(
            info.strides[rowMajor ? 0 : 1] / sizeof(Scalar),
            info.strides[rowMajor ? 1 : 0] / sizeof(Scalar));

        auto map = Eigen::Map<Matrix, 0, Strides>(
            static_cat<Scalar *>(info.ptr), info.shape[0], info.shape[1], strides);

        new (&m) Matrix(map);
    });





For reference, the def_buffer() call for this Eigen data type should look
as follows:

.def_buffer([](Matrix &m) -> py::buffer_info {
    return py::buffer_info(
        m.data(),                /* Pointer to buffer */
        sizeof(Scalar),          /* Size of one scalar */
        /* Python struct-style format descriptor */
        py::format_descriptor<Scalar>::value,
        /* Number of dimensions */
        2,
        /* Buffer dimensions */
        { (size_t) m.rows(),
          (size_t) m.cols() },
        /* Strides (in bytes) for each index */
        { sizeof(Scalar) * (rowMajor ? m.cols() : 1),
          sizeof(Scalar) * (rowMajor ? 1 : m.rows()) }
    );
 })





For a much easier approach of binding Eigen types (although with some
limitations), refer to the section on Transparent conversion of dense and sparse Eigen data types.


See also

The file example/example7.cpp contains a complete example that
demonstrates using the buffer protocol with pybind11 in more detail.




	2

	http://docs.python.org/3/c-api/buffer.html







NumPy support

By exchanging py::buffer with py::array in the above snippet, we can
restrict the function so that it only accepts NumPy arrays (rather than any
type of Python object satisfying the buffer protocol).

In many situations, we want to define a function which only accepts a NumPy
array of a certain data type. This is possible via the py::array_t<T>
template. For instance, the following function requires the argument to be a
NumPy array containing double precision values.

void f(py::array_t<double> array);





When it is invoked with a different type (e.g. an integer or a list of
integers), the binding code will attempt to cast the input into a NumPy array
of the requested type. Note that this feature requires the
:file:pybind11/numpy.h header to be included.

Data in NumPy arrays is not guaranteed to packed in a dense manner;
furthermore, entries can be separated by arbitrary column and row strides.
Sometimes, it can be useful to require a function to only accept dense arrays
using either the C (row-major) or Fortran (column-major) ordering. This can be
accomplished via a second template argument with values py::array::c_style
or py::array::f_style.

void f(py::array_t<double, py::array::c_style | py::array::forcecast> array);





The py::array::forcecast argument is the default value of the second
template paramenter, and it ensures that non-conforming arguments are converted
into an array satisfying the specified requirements instead of trying the next
function overload.



Vectorizing functions

Suppose we want to bind a function with the following signature to Python so
that it can process arbitrary NumPy array arguments (vectors, matrices, general
N-D arrays) in addition to its normal arguments:

double my_func(int x, float y, double z);





After including the pybind11/numpy.h header, this is extremely simple:

m.def("vectorized_func", py::vectorize(my_func));





Invoking the function like below causes 4 calls to be made to my_func with
each of the array elements. The significant advantage of this compared to
solutions like numpy.vectorize() is that the loop over the elements runs
entirely on the C++ side and can be crunched down into a tight, optimized loop
by the compiler. The result is returned as a NumPy array of type
numpy.dtype.float64.

>>> x = np.array([[1, 3],[5, 7]])
>>> y = np.array([[2, 4],[6, 8]])
>>> z = 3
>>> result = vectorized_func(x, y, z)





The scalar argument z is transparently replicated 4 times.  The input
arrays x and y are automatically converted into the right types (they
are of type  numpy.dtype.int64 but need to be numpy.dtype.int32 and
numpy.dtype.float32, respectively)

Sometimes we might want to explicitly exclude an argument from the vectorization
because it makes little sense to wrap it in a NumPy array. For instance,
suppose the function signature was

double my_func(int x, float y, my_custom_type *z);





This can be done with a stateful Lambda closure:

// Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
m.def("vectorized_func",
    [](py::array_t<int> x, py::array_t<float> y, my_custom_type *z) {
        auto stateful_closure = [z](int x, float y) { return my_func(x, y, z); };
        return py::vectorize(stateful_closure)(x, y);
    }
);





In cases where the computation is too complicated to be reduced to
vectorize, it will be necessary to create and access the buffer contents
manually. The following snippet contains a complete example that shows how this
works (the code is somewhat contrived, since it could have been done more
simply using vectorize).

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>

namespace py = pybind11;

py::array_t<double> add_arrays(py::array_t<double> input1, py::array_t<double> input2) {
    auto buf1 = input1.request(), buf2 = input2.request();

    if (buf1.ndim != 1 || buf2.ndim != 1)
        throw std::runtime_error("Number of dimensions must be one");

    if (buf1.shape[0] != buf2.shape[0])
        throw std::runtime_error("Input shapes must match");

    auto result = py::array(py::buffer_info(
        nullptr,            /* Pointer to data (nullptr -> ask NumPy to allocate!) */
        sizeof(double),     /* Size of one item */
        py::format_descriptor<double>::value(), /* Buffer format */
        buf1.ndim,          /* How many dimensions? */
        { buf1.shape[0] },  /* Number of elements for each dimension */
        { sizeof(double) }  /* Strides for each dimension */
    ));

    auto buf3 = result.request();

    double *ptr1 = (double *) buf1.ptr,
           *ptr2 = (double *) buf2.ptr,
           *ptr3 = (double *) buf3.ptr;

    for (size_t idx = 0; idx < buf1.shape[0]; idx++)
        ptr3[idx] = ptr1[idx] + ptr2[idx];

    return result;
}

PYBIND11_PLUGIN(test) {
    py::module m("test");
    m.def("add_arrays", &add_arrays, "Add two NumPy arrays");
    return m.ptr();
}






See also

The file example/example10.cpp contains a complete example that
demonstrates using vectorize() in more detail.





Functions taking Python objects as arguments

pybind11 exposes all major Python types using thin C++ wrapper classes. These
wrapper classes can also be used as parameters of functions in bindings, which
makes it possible to directly work with native Python types on the C++ side.
For instance, the following statement iterates over a Python dict:

void print_dict(py::dict dict) {
    /* Easily interact with Python types */
    for (auto item : dict)
        std::cout << "key=" << item.first << ", "
                  << "value=" << item.second << std::endl;
}





Available types include handle, object, bool_,
int_, float_, str, bytes, tuple,
list, dict, slice, none, capsule,
iterable, iterator, function, buffer,
array, and array_t.

In this kind of mixed code, it is often necessary to convert arbitrary C++
types to Python, which can be done using cast():

MyClass *cls = ..;
py::object obj = py::cast(cls);





The reverse direction uses the following syntax:

py::object obj = ...;
MyClass *cls = obj.cast<MyClass *>();





When conversion fails, both directions throw the exception cast_error.
It is also possible to call python functions via operator().

py::function f = <...>;
py::object result_py = f(1234, "hello", some_instance);
MyClass &result = result_py.cast<MyClass>();





The special f(*args) and f(*args, **kwargs) syntax is also supported to
supply arbitrary argument and keyword lists, although these cannot be mixed
with other parameters.

py::function f = <...>;
py::tuple args = py::make_tuple(1234);
py::dict kwargs;
kwargs["y"] = py::cast(5678);
py::object result = f(*args, **kwargs);






See also

The file example/example2.cpp contains a complete example that
demonstrates passing native Python types in more detail. The file
example/example11.cpp discusses usage of args and kwargs.





Default arguments revisited

The section on Default arguments previously discussed basic usage of default
arguments using pybind11. One noteworthy aspect of their implementation is that
default arguments are converted to Python objects right at declaration time.
Consider the following example:

py::class_<MyClass>("MyClass")
    .def("myFunction", py::arg("arg") = SomeType(123));





In this case, pybind11 must already be set up to deal with values of the type
SomeType (via a prior instantiation of py::class_<SomeType>), or an
exception will be thrown.

Another aspect worth highlighting is that the “preview” of the default argument
in the function signature is generated using the object’s __repr__ method.
If not available, the signature may not be very helpful, e.g.:

FUNCTIONS
...
|  myFunction(...)
|      Signature : (MyClass, arg : SomeType = <SomeType object at 0x101b7b080>) -> NoneType
...





The first way of addressing this is by defining SomeType.__repr__.
Alternatively, it is possible to specify the human-readable preview of the
default argument manually using the arg_t notation:

py::class_<MyClass>("MyClass")
    .def("myFunction", py::arg_t<SomeType>("arg", SomeType(123), "SomeType(123)"));





Sometimes it may be necessary to pass a null pointer value as a default
argument. In this case, remember to cast it to the underlying type in question,
like so:

py::class_<MyClass>("MyClass")
    .def("myFunction", py::arg("arg") = (SomeType *) nullptr);







Binding functions that accept arbitrary numbers of arguments and keywords arguments

Python provides a useful mechanism to define functions that accept arbitrary
numbers of arguments and keyword arguments:

def generic(*args, **kwargs):
    # .. do something with args and kwargs





Such functions can also be created using pybind11:

void generic(py::args args, py::kwargs kwargs) {
    /// .. do something with args
    if (kwargs)
        /// .. do something with kwargs
}

/// Binding code
m.def("generic", &generic);





(See example/example11.cpp). The class py::args derives from
py::list and py::kwargs derives from py::dict Note that the
kwargs argument is invalid if no keyword arguments were actually provided.
Please refer to the other examples for details on how to iterate over these,
and on how to cast their entries into C++ objects.



Partitioning code over multiple extension modules

It’s straightforward to split binding code over multiple extension modules,
while referencing types that are declared elsewhere. Everything “just” works
without any special precautions. One exception to this rule occurs when
extending a type declared in another extension module. Recall the basic example
from Section Inheritance.

py::class_<Pet> pet(m, "Pet");
pet.def(py::init<const std::string &>())
   .def_readwrite("name", &Pet::name);

py::class_<Dog>(m, "Dog", pet /* <- specify parent */)
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);





Suppose now that Pet bindings are defined in a module named basic,
whereas the Dog bindings are defined somewhere else. The challenge is of
course that the variable pet is not available anymore though it is needed
to indicate the inheritance relationship to the constructor of class_<Dog>.
However, it can be acquired as follows:

py::object pet = (py::object) py::module::import("basic").attr("Pet");

py::class_<Dog>(m, "Dog", pet)
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);





Alternatively, we can rely on the base tag, which performs an automated
lookup of the corresponding Python type. However, this also requires invoking
the import function once to ensure that the pybind11 binding code of the
module basic has been executed.

py::module::import("basic");

py::class_<Dog>(m, "Dog", py::base<Pet>())
    .def(py::init<const std::string &>())
    .def("bark", &Dog::bark);





Naturally, both methods will fail when there are cyclic dependencies.

Note that compiling code which has its default symbol visibility set to
hidden (e.g. via the command line flag -fvisibility=hidden on GCC/Clang) can interfere with the
ability to access types defined in another extension module. Workarounds
include changing the global symbol visibility (not recommended, because it will
lead unnecessarily large binaries) or manually exporting types that are
accessed by multiple extension modules:

#ifdef _WIN32
#  define EXPORT_TYPE __declspec(dllexport)
#else
#  define EXPORT_TYPE __attribute__ ((visibility("default")))
#endif

class EXPORT_TYPE Dog : public Animal {
    ...
};







Pickling support

Python’s pickle module provides a powerful facility to serialize and
de-serialize a Python object graph into a binary data stream. To pickle and
unpickle C++ classes using pybind11, two additional functions must be provided.
Suppose the class in question has the following signature:

class Pickleable {
public:
    Pickleable(const std::string &value) : m_value(value) { }
    const std::string &value() const { return m_value; }

    void setExtra(int extra) { m_extra = extra; }
    int extra() const { return m_extra; }
private:
    std::string m_value;
    int m_extra = 0;
};





The binding code including the requisite __setstate__ and __getstate__ methods 3
looks as follows:

py::class_<Pickleable>(m, "Pickleable")
    .def(py::init<std::string>())
    .def("value", &Pickleable::value)
    .def("extra", &Pickleable::extra)
    .def("setExtra", &Pickleable::setExtra)
    .def("__getstate__", [](const Pickleable &p) {
        /* Return a tuple that fully encodes the state of the object */
        return py::make_tuple(p.value(), p.extra());
    })
    .def("__setstate__", [](Pickleable &p, py::tuple t) {
        if (t.size() != 2)
            throw std::runtime_error("Invalid state!");

        /* Invoke the in-place constructor. Note that this is needed even
           when the object just has a trivial default constructor */
        new (&p) Pickleable(t[0].cast<std::string>());

        /* Assign any additional state */
        p.setExtra(t[1].cast<int>());
    });





An instance can now be pickled as follows:

try:
    import cPickle as pickle  # Use cPickle on Python 2.7
except ImportError:
    import pickle

p = Pickleable("test_value")
p.setExtra(15)
data = pickle.dumps(p, 2)





Note that only the cPickle module is supported on Python 2.7. The second
argument to dumps is also crucial: it selects the pickle protocol version
2, since the older version 1 is not supported. Newer versions are also fine—for
instance, specify -1 to always use the latest available version. Beware:
failure to follow these instructions will cause important pybind11 memory
allocation routines to be skipped during unpickling, which will likely lead to
memory corruption and/or segmentation faults.


See also

The file example/example15.cpp contains a complete example that
demonstrates how to pickle and unpickle types using pybind11 in more detail.




	3

	http://docs.python.org/3/library/pickle.html#pickling-class-instances







Generating documentation using Sphinx

Sphinx 4 has the ability to inspect the signatures and documentation
strings in pybind11-based extension modules to automatically generate beautiful
documentation in a variety formats. The python_example repository 5 contains a
simple example repository which uses this approach.

There are two potential gotchas when using this approach: first, make sure that
the resulting strings do not contain any TAB characters, which break the
docstring parsing routines. You may want to use C++11 raw string literals,
which are convenient for multi-line comments. Conveniently, any excess
indentation will be automatically be removed by Sphinx. However, for this to
work, it is important that all lines are indented consistently, i.e.:

// ok
m.def("foo", &foo, R"mydelimiter(
    The foo function

    Parameters
    ----------
)mydelimiter");

// *not ok*
m.def("foo", &foo, R"mydelimiter(The foo function

    Parameters
    ----------
)mydelimiter");






	4

	http://www.sphinx-doc.org



	5

	http://github.com/pybind/python_example









          

      

      

    

  

    
      
          
            
  
Build systems


Building with setuptools

For projects on PyPI, building with setuptools is the way to go. Sylvain Corlay
has kindly provided an example project which shows how to set up everything,
including automatic generation of documentation using Sphinx. Please refer to
the [python_example] repository.


	python_example

	https://github.com/pybind/python_example







Building with cppimport


cppimport is a small Python import hook that determines whether there is a C++
source file whose name matches the requested module. If there is, the file is
compiled as a Python extension using pybind11 and placed in the same folder as
the C++ source file. Python is then able to find the module and load it.





	cppimport

	https://github.com/tbenthompson/cppimport







Building with CMake

For C++ codebases that have an existing CMake-based build system, a Python
extension module can be created with just a few lines of code:

cmake_minimum_required(VERSION 2.8.12)
project(example)

add_subdirectory(pybind11)
pybind11_add_module(example example.cpp)





This assumes that the pybind11 repository is located in a subdirectory named
pybind11 and that the code is located in a file named example.cpp.
The CMake command add_subdirectory will import a function with the signature
pybind11_add_module(<name> source1 [source2 ...]). It will take care of all
the details needed to build a Python extension module on any platform.

The target Python version can be selected by setting the PYBIND11_PYTHON_VERSION
variable before adding the pybind11 subdirectory. Alternatively, an exact Python
installation can be specified by setting PYTHON_EXECUTABLE.

A working sample project, including a way to invoke CMake from setup.py for
PyPI integration, can be found in the [cmake_example]  repository.


	cmake_example

	https://github.com/pybind/cmake_example









          

      

      

    

  

    
      
          
            
  
Benchmark

The following is the result of a synthetic benchmark comparing both compilation
time and module size of pybind11 against Boost.Python.


Setup

A python script (see the docs/benchmark.py file) was used to generate a set
of files with dummy classes whose count increases for each successive benchmark
(between 1 and 2048 classes in powers of two). Each class has four methods with
a randomly generated signature with a return value and four arguments. (There
was no particular reason for this setup other than the desire to generate many
unique function signatures whose count could be controlled in a simple way.)

Here is an example of the binding code for one class:

...
class cl034 {
public:
    cl279 *fn_000(cl084 *, cl057 *, cl065 *, cl042 *);
    cl025 *fn_001(cl098 *, cl262 *, cl414 *, cl121 *);
    cl085 *fn_002(cl445 *, cl297 *, cl145 *, cl421 *);
    cl470 *fn_003(cl200 *, cl323 *, cl332 *, cl492 *);
};
...

PYBIND11_PLUGIN(example) {
    py::module m("example");
    ...
    py::class_<cl034>(m, "cl034")
        .def("fn_000", &cl034::fn_000)
        .def("fn_001", &cl034::fn_001)
        .def("fn_002", &cl034::fn_002)
        .def("fn_003", &cl034::fn_003)
    ...
    return m.ptr();
}





The Boost.Python version looks almost identical except that a return value
policy had to be specified as an argument to def(). For both libraries,
compilation was done with

Apple LLVM version 7.0.2 (clang-700.1.81)





and the following compilation flags

g++ -Os -shared -rdynamic -undefined dynamic_lookup -fvisibility=hidden -std=c++14







Compilation time

The following log-log plot shows how the compilation time grows for an
increasing number of class and function declarations. pybind11 includes many
fewer headers, which initially leads to shorter compilation times, but the
performance is ultimately fairly similar (pybind11 is 19.8 seconds faster for
the largest largest file with 2048 classes and a total of 8192 methods – a
modest 1.2x speedup relative to Boost.Python, which required 116.35
seconds).

[image: _images/pybind11_vs_boost_python1.svg]

Module size

Differences between the two libraries become much more pronounced when
considering the file size of the generated Python plugin: for the largest file,
the binary generated by Boost.Python required 16.8 MiB, which was 2.17
times / 9.1 megabytes larger than the output generated by pybind11. For
very small inputs, Boost.Python has an edge in the plot below – however, note
that it stores many definitions in an external library, whose size was not
included here, hence the comparison is slightly shifted in Boost.Python’s
favor.

[image: _images/pybind11_vs_boost_python2.svg]



          

      

      

    

  

    
      
          
            
  
Limitations

pybind11 strives to be a general solution to binding generation, but it also has
certain limitations:


	pybind11 casts away const-ness in function arguments and return values.
This is in line with the Python language, which has no concept of const
values. This means that some additional care is needed to avoid bugs that
would be caught by the type checker in a traditional C++ program.


	Multiple inheritance relationships on the C++ side cannot be mapped to
Python.




Both of these features could be implemented but would lead to a significant
increase in complexity. I’ve decided to draw the line here to keep this project
simple and compact. Users who absolutely require these features are encouraged
to fork pybind11.




          

      

      

    

  

    
      
          
            
  
Frequently asked questions


“ImportError: dynamic module does not define init function”


	Make sure that the name specified in pybind::module and
PYBIND11_PLUGIN is consistent and identical to the filename of the
extension library. The latter should not contain any extra prefixes (e.g.
test.so instead of libtest.so).


	If the above did not fix your issue, then you are likely using an
incompatible version of Python (for instance, the extension library was
compiled against Python 2, while the interpreter is running on top of some
version of Python 3, or vice versa)






“Symbol not found: __Py_ZeroStruct / _PyInstanceMethod_Type”

See item 2 of the first answer.



The Python interpreter immediately crashes when importing my module

See item 2 of the first answer.



CMake doesn’t detect the right Python version

The CMake-based build system will try to automatically detect the installed
version of Python and link against that. When this fails, or when there are
multiple versions of Python and it finds the wrong one, delete
CMakeCache.txt and then invoke CMake as follows:

cmake -DPYTHON_EXECUTABLE:FILEPATH=<path-to-python-executable> .







Limitations involving reference arguments

In C++, it’s fairly common to pass arguments using mutable references or
mutable pointers, which allows both read and write access to the value
supplied by the caller. This is sometimes done for efficiency reasons, or to
realize functions that have multiple return values. Here are two very basic
examples:

void increment(int &i) { i++; }
void increment_ptr(int *i) { (*i)++; }





In Python, all arguments are passed by reference, so there is no general
issue in binding such code from Python.

However, certain basic Python types (like str, int, bool,
float, etc.) are immutable. This means that the following attempt
to port the function to Python doesn’t have the same effect on the value
provided by the caller – in fact, it does nothing at all.

def increment(i):
    i += 1 # nope..





pybind11 is also affected by such language-level conventions, which means that
binding increment or increment_ptr will also create Python functions
that don’t modify their arguments.

Although inconvenient, one workaround is to encapsulate the immutable types in
a custom type that does allow modifications.

An other alternative involves binding a small wrapper lambda function that
returns a tuple with all output arguments (see the remainder of the
documentation for examples on binding lambda functions). An example:

int foo(int &i) { i++; return 123; }





and the binding code

m.def("foo", [](int i) { int rv = foo(i); return std::make_tuple(rv, i); });







How can I reduce the build time?

It’s good practice to split binding code over multiple files, as is done in
the included file example/example.cpp.

void init_ex1(py::module &);
void init_ex2(py::module &);
/* ... */

PYBIND11_PLUGIN(example) {
    py::module m("example", "pybind example plugin");

    init_ex1(m);
    init_ex2(m);

    /* ... */

    return m.ptr();
}





The various init_ex functions should be contained in separate files that
can be compiled independently from another. Following this approach will


	reduce memory requirements per compilation unit.


	enable parallel builds (if desired).


	allow for faster incremental builds. For instance, when a single class
definiton is changed, only a subset of the binding code will generally need
to be recompiled.






How can I create smaller binaries?

To do its job, pybind11 extensively relies on a programming technique known as
template metaprogramming, which is a way of performing computation at compile
time using type information. Template metaprogamming usually instantiates code
involving significant numbers of deeply nested types that are either completely
removed or reduced to just a few instrutions during the compiler’s optimization
phase. However, due to the nested nature of these types, the resulting symbol
names in the compiled extension library can be extremely long. For instance,
the included test suite contains the following symbol:

_​_​Z​N​8​p​y​b​i​n​d​1​1​1​2​c​p​p​_​f​u​n​c​t​i​o​n​C​1​I​v​8​E​x​a​m​p​l​e​2​J​R​N​S​t​3​_​_​1​6​v​e​c​t​o​r​I​N​S​3​_​1​2​b​a​s​i​c​_​s​t​r​i​n​g​I​w​N​S​3​_​1​1​c​h​a​r​_​t​r​a​i​t​s​I​w​E​E​N​S​3​_​9​a​l​l​o​c​a​t​o​r​I​w​E​E​E​E​N​S​8​_​I​S​A​_​E​E​E​E​E​J​N​S​_​4​n​a​m​e​E​N​S​_​7​s​i​b​l​i​n​g​E​N​S​_​9​i​s​_​m​e​t​h​o​d​E​A​2​8​_​c​E​E​E​M​T​0​_​F​T​_​D​p​T​1​_​E​D​p​R​K​T​2​_​





which is the mangled form of the following function type:

pybind11::cpp_function::cpp_function<void, Example2, std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&, pybind11::name, pybind11::sibling, pybind11::is_method, char [28]>(void (Example2::*)(std::__1::vector<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> >, std::__1::allocator<std::__1::basic_string<wchar_t, std::__1::char_traits<wchar_t>, std::__1::allocator<wchar_t> > > >&), pybind11::name const&, pybind11::sibling const&, pybind11::is_method const&, char const (&) [28])





The memory needed to store just the mangled name of this function (196 bytes)
is larger than the actual piece of code (111 bytes) it represents! On the other
hand, it’s silly to even give this function a name – after all, it’s just a
tiny cog in a bigger piece of machinery that is not exposed to the outside
world. So we’ll generally only want to export symbols for those functions which
are actually called from the outside.

This can be achieved by specifying the parameter -fvisibility=hidden to GCC
and Clang, which sets the default symbol visibility to hidden. It’s best to
do this only for release builds, since the symbol names can be helpful in
debugging sessions. On Visual Studio, symbols are already hidden by default, so
nothing needs to be done there. Needless to say, this has a tremendous impact
on the final binary size of the resulting extension library.

Another aspect that can require a fair bit of code are function signature
descriptions. pybind11 automatically generates human-readable function
signatures for docstrings, e.g.:

|  __init__(...)
|      __init__(*args, **kwargs)
|      Overloaded function.
|
|      1. __init__(example.Example1) -> NoneType
|
|      Docstring for overload #1 goes here
|
|      2. __init__(example.Example1, int) -> NoneType
|
|      Docstring for overload #2 goes here
|
|      3. __init__(example.Example1, example.Example1) -> NoneType
|
|      Docstring for overload #3 goes here





In C++11 mode, these are generated at run time using string concatenation,
which can amount to 10-20% of the size of the resulting binary. If you can,
enable C++14 language features (using -std=c++14 for GCC/Clang), in which
case signatures are efficiently pre-generated at compile time. Unfortunately,
Visual Studio’s C++14 support (constexpr) is not good enough as of April
2016, so it always uses the more expensive run-time approach.



Working with ancient Visual Studio 2009 builds on Windows

The official Windows distributions of Python are compiled using truly
ancient versions of Visual Studio that lack good C++11 support. Some users
implicitly assume that it would be impossible to load a plugin built with
Visual Studio 2015 into a Python distribution that was compiled using Visual
Studio 2009. However, no such issue exists: it’s perfectly legitimate to
interface DLLs that are built with different compilers and/or C libraries.
Common gotchas to watch out for involve not free()-ing memory region
that that were malloc()-ed in another shared library, using data
structures with incompatible ABIs, and so on. pybind11 is very careful not
to make these types of mistakes.





          

      

      

    

  

    
      
          
            
  
Warning

Please be advised that the reference documentation discussing pybind11
internals is currently incomplete. Please refer to the previous sections
and the pybind11 header files for the nitty gritty details.




Reference


Macros


	
PYBIND11_PLUGIN(const char *name)


	This macro creates the entry point that will be invoked when the Python
interpreter imports a plugin library. Please create a
module in the function body and return the pointer to its
underlying Python object at the end.

PYBIND11_PLUGIN(example) {
    pybind11::module m("example", "pybind11 example plugin");
    /// Set up bindings here
    return m.ptr();
}











Convenience classes for arbitrary Python types


Without reference counting


	
class handle


	The handle class is a thin wrapper around an arbitrary Python
object (i.e. a PyObject * in Python’s C API). It does not perform any
automatic reference counting and merely provides a basic C++ interface to
various Python API functions.






See also

The object class inherits from handle and adds automatic
reference counting features.




	
handle::handle()


	The default constructor creates a handle with a nullptr-valued pointer.






	
handle::handle(const handle&)


	Copy constructor






	
handle::handle(PyObject *)


	Creates a handle from the given raw Python object pointer.






	
PyObject *handle::ptr() const


	Return the PyObject * underlying a handle.






	
const handle &handle::inc_ref() const


	Manually increase the reference count of the Python object. Usually, it is
preferable to use the object class which derives from
handle and calls this function automatically. Returns a reference
to itself.






	
const handle &handle::dec_ref() const


	Manually decrease the reference count of the Python object. Usually, it is
preferable to use the object class which derives from
handle and calls this function automatically. Returns a reference
to itself.






	
void handle::ref_count() const


	Return the object’s current reference count






	
handle handle::get_type() const


	Return a handle to the Python type object underlying the instance






	
template<typename T>
T handle::cast() const


	Attempt to cast the Python object into the given C++ type. A
cast_error will be throw upon failure.






	
template<typename ...Args>
object handle::call(Args&&... args) const


	Assuming the Python object is a function or implements the __call__
protocol, call() invokes the underlying function, passing an arbitrary
set of parameters. The result is returned as a object and may need
to be converted back into a Python object using handle::cast().

When some of the arguments cannot be converted to Python objects, the
function will throw a cast_error exception. When the Python
function call fails, a error_already_set exception is thrown.







With reference counting


	
class object : public handle


	Like handle, the object class is a thin wrapper around an
arbitrary Python object (i.e. a PyObject * in Python’s C API). In
contrast to handle, it optionally increases the object’s reference
count upon construction, and it always decreases the reference count when
the object instance goes out of scope and is destructed. When
using object instances consistently, it is much easier to get
reference counting right at the first attempt.






	
object::object(const object &o)


	Copy constructor; always increases the reference count






	
object::object(const handle &h, bool borrowed)


	Creates a object from the given handle. The reference
count is only increased if the borrowed parameter is set to true.






	
object::object(PyObject *ptr, bool borrowed)


	Creates a object from the given raw Python object pointer. The
reference  count is only increased if the borrowed parameter is set to
true.






	
object::object(object &&other)


	Move constructor; steals the object from other and preserves its
reference count.






	
handle object::release()


	Resets the internal pointer to nullptr without without decreasing the
object’s reference count. The function returns a raw handle to the original
Python object.






	
object::~object()


	Destructor, which automatically calls handle::dec_ref().








Convenience classes for specific Python types


	
class module : public object


	




	
module::module(const char *name, const char *doc = nullptr)


	Create a new top-level Python module with the given name and docstring






	
module module::def_submodule(const char *name, const char *doc = nullptr)


	Create and return a new Python submodule with the given name and docstring.
This also works recursively, i.e.

pybind11::module m("example", "pybind11 example plugin");
pybind11::module m2 = m.def_submodule("sub", "A submodule of 'example'");
pybind11::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");










	
template<typename Func, typename ...Extra>
module &module::def(const char *name, Func &&f, Extra&&... extra)


	Create Python binding for a new function within the module scope. Func
can be a plain C++ function, a function pointer, or a lambda function. For
details on the Extra&& ... extra argument, see section Passing extra arguments to the def function.







Passing extra arguments to the def function


	
class arg


	




	
arg::arg(const char *name)


	




	
template<typename T>
arg_t<T> arg::operator=(const T &value)


	




	
template<typename T>
class arg_t<T> : public arg


	Represents a named argument with a default value






	
class sibling


	Used to specify a handle to an existing sibling function; used internally
to implement function overloading in module::def() and
class_::def().






	
sibling::sibling(handle handle)


	




	
doc::doc(const char *value)


	Create a new docstring with the specified value






	
name::name(const char *value)


	Used to specify the function name









          

      

      

    

  

    
      
          
            
  
Changelog

Starting with version 1.8, pybind11 releases use a
[semantic versioning](http://semver.org) policy.


Breaking changes queued for v2.0.0 (Not yet released)


	Redesigned virtual call mechanism and user-facing syntax (see
https://github.com/pybind/pybind11/commit/86d825f3302701d81414ddd3d38bcd09433076bc)


	Remove handle.call() method






1.8.1 (July 12, 2016)


	Fixed a rare but potentially very severe issue when the garbage collector ran
during pybind11 type creation.






1.8.0 (June 14, 2016)


	Redesigned CMake build system which exports a convenient
pybind11_add_module function to parent projects.


	std::vector<> type bindings analogous to Boost.Python’s indexing_suite


	Transparent conversion of sparse and dense Eigen matrices and vectors (eigen.h)


	Added an ExtraFlags template argument to the NumPy array_t<> wrapper
to disable an enforced cast that may lose precision, e.g. to create overloads
for different precisions and complex vs real-valued matrices.


	Prevent implicit conversion of floating point values to integral types in
function arguments


	Fixed incorrect default return value policy for functions returning a shared
pointer


	Don’t allow registering a type via class_ twice


	Don’t allow casting a None value into a C++ lvalue reference


	Fixed a crash in enum_::operator== that was triggered by the help() command


	Improved detection of whether or not custom C++ types can be copy/move-constructed


	Extended str type to also work with bytes instances


	Added a "name"_a user defined string literal that is equivalent to py::arg("name").


	When specifying function arguments via py::arg, the test that verifies
the number of arguments now runs at compile time.


	Added [[noreturn]] attribute to pybind11_fail() to quench some
compiler warnings


	List function arguments in exception text when the dispatch code cannot find
a matching overload


	Added PYBIND11_OVERLOAD_NAME and PYBIND11_OVERLOAD_PURE_NAME macros which
can be used to override virtual methods whose name differs in C++ and Python
(e.g. __call__ and operator())


	Various minor iterator and make_iterator() improvements


	Transparently support __bool__ on Python 2.x and Python 3.x


	Fixed issue with destructor of unpickled object not being called


	Minor CMake build system improvements on Windows


	New pybind11::args and pybind11::kwargs types to create functions which
take an arbitrary number of arguments and keyword arguments


	New syntax to call a Python function from C++ using *args and *kwargs


	The functions def_property_* now correctly process docstring arguments (these
formerly caused a segmentation fault)


	Many mkdoc.py improvements (enumerations, template arguments, DOC()
macro accepts more arguments)


	Cygwin support


	Documentation improvements (pickling support, keep_alive, macro usage)






1.7 (April 30, 2016)


	Added a new move return value policy that triggers C++11 move semantics.
The automatic return value policy falls back to this case whenever a rvalue
reference is encountered


	Significantly more general GIL state routines that are used instead of
Python’s troublesome PyGILState_Ensure and PyGILState_Release API


	Redesign of opaque types that drastically simplifies their usage


	Extended ability to pass values of type [const] void *


	keep_alive fix: don’t fail when there is no patient


	functional.h: acquire the GIL before calling a Python function


	Added Python RAII type wrappers none and iterable


	Added *args and *kwargs pass-through parameters to
pybind11.get_include() function


	Iterator improvements and fixes


	Documentation on return value policies and opaque types improved






1.6 (April 30, 2016)


	Skipped due to upload to PyPI gone wrong and inability to recover
(https://github.com/pypa/packaging-problems/issues/74)






1.5 (April 21, 2016)


	For polymorphic types, use RTTI to try to return the closest type registered with pybind11


	Pickling support for serializing and unserializing C++ instances to a byte stream in Python


	Added a convenience routine make_iterator() which turns a range indicated
by a pair of C++ iterators into a iterable Python object


	Added len() and a variadic make_tuple() function


	Addressed a rare issue that could confuse the current virtual function
dispatcher and another that could lead to crashes in multi-threaded
applications


	Added a get_include() function to the Python module that returns the path
of the directory containing the installed pybind11 header files


	Documentation improvements: import issues, symbol visibility, pickling, limitations


	Added casting support for std::reference_wrapper<>






1.4 (April 7, 2016)


	Transparent type conversion for std::wstring and wchar_t


	Allow passing nullptr-valued strings


	Transparent passing of void * pointers using capsules


	Transparent support for returning values wrapped in std::unique_ptr<>


	Improved docstring generation for compatibility with Sphinx


	Nicer debug error message when default parameter construction fails


	Support for “opaque” types that bypass the transparent conversion layer for STL containers


	Redesigned type casting interface to avoid ambiguities that could occasionally cause compiler errors


	Redesigned property implementation; fixes crashes due to an unfortunate default return value policy


	Anaconda package generation support






1.3 (March 8, 2016)


	Added support for the Intel C++ compiler (v15+)


	Added support for the STL unordered set/map data structures


	Added support for the STL linked list data structure


	NumPy-style broadcasting support in pybind11::vectorize


	pybind11 now displays more verbose error messages when arg::operator=() fails


	pybind11 internal data structures now live in a version-dependent namespace to avoid ABI issues


	Many, many bugfixes involving corner cases and advanced usage






1.2 (February 7, 2016)


	Optional: efficient generation of function signatures at compile time using C++14


	Switched to a simpler and more general way of dealing with function default
arguments. Unused keyword arguments in function calls are now detected and
cause errors as expected


	New keep_alive call policy analogous to Boost.Python’s with_custodian_and_ward


	New pybind11::base<> attribute to indicate a subclass relationship


	Improved interface for RAII type wrappers in pytypes.h


	Use RAII type wrappers consistently within pybind11 itself. This
fixes various potential refcount leaks when exceptions occur


	Added new bytes RAII type wrapper (maps to string in Python 2.7)


	Made handle and related RAII classes const correct, using them more
consistently everywhere now


	Got rid of the ugly __pybind11__ attributes on the Python side—they are
now stored in a C++ hash table that is not visible in Python


	Fixed refcount leaks involving NumPy arrays and bound functions


	Vastly improved handling of shared/smart pointers


	Removed an unnecessary copy operation in pybind11::vectorize


	Fixed naming clashes when both pybind11 and NumPy headers are included


	Added conversions for additional exception types


	Documentation improvements (using multiple extension modules, smart pointers,
other minor clarifications)


	unified infrastructure for parsing variadic arguments in class_ and cpp_function


	Fixed license text (was: ZLIB, should have been: 3-clause BSD)


	Python 3.2 compatibility


	Fixed remaining issues when accessing types in another plugin module


	Added enum comparison and casting methods


	Improved SFINAE-based detection of whether types are copy-constructible


	Eliminated many warnings about unused variables and the use of offsetof()


	Support for std::array<> conversions






1.1 (December 7, 2015)


	Documentation improvements (GIL, wrapping functions, casting, fixed many typos)


	Generalized conversion of integer types


	Improved support for casting function objects


	Improved support for std::shared_ptr<> conversions


	Initial support for std::set<> conversions


	Fixed type resolution issue for types defined in a separate plugin module


	Cmake build system improvements


	Factored out generic functionality to non-templated code (smaller code size)


	Added a code size / compile time benchmark vs Boost.Python


	Added an appveyor CI script






1.0 (October 15, 2015)


	Initial release
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  To release a new version of pybind11:


	
	Update the version number and push to pypi

	
	Update pybind11/_version.py (set release version, remove ‘dev’)


	Update version in docs/conf.py


	Tag release date in docs/changelog.rst.


	git add and git commit.


	git tag -a vX.Y.Z -m 'vX.Y.Z release'.


	git push


	git push --tags.


	python setup.py sdist upload.


	python setup.py bdist_wheel upload.










	
	Update conda-forge (https://github.com/conda-forge/pybind11-feedstock)

	
	change version number in meta.yml


	update checksum to match the one computed by pypi










	
	Get back to work

	
	Update _version.py (add ‘dev’ and increment minor).


	Update version macros in include/pybind11/common.h


	git add and git commit.
git push
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